Barshi Shikshan Prasarak Mandal's

Shriman Bhausaheb Zadbuke Mahavidyalaya, Barshi

Zadbuke Marg, Latur Road, Barshi, Dist - Solapur, Maharastra, India - 413401

Department of Physics

Profile

About the Department

The Department of Physics was started in 1969. The first faculty of the department was Shri S.B. Shinde. There had been a single Full-time faculty. We as a department run B.Sc. Physics as a regular course. Apart from the course we have Active MoU to organize different kinds of activities programmes and events. As well we have few certificate courses. The faculty member is actively involved in research, extension and community services.

1) Courses:

	Courses	Duration	Required Qualification
Degree	B.Sc.	3 Years	H.Sc.
Certificate	Certificate/Add on Course	3 months	H.Sc.

2) Faculty and Staff:

Sr. No.	Name	Designation	Qualification
1	Dr. R.M. Mohite	Head and Assistant	M.Sc., Ph.D.
1		Professor	
2	Mr. A.D. Pawar	Lab. Attendant	H.Sc.

3) MoU's:

Sr. No.	MoU with	Purpose	Duration
1	Marathi Vidnyan Parishad	To exchange the	5 years
		knowledge and conduct	
		activities in	
		collaboration	

4. Memberships: Editorial and Advisory Board member of :

- 1. Condensed Matter Physics Report, Whioce Publishing Pte. Ltd., Singapore
- 2. "International Journal of Emerging Technology and Advanced Engineering".
- 3. Int. J. of Sim. in Phys.
- 4. International Journal of Recent Development in Engineering and Technology. Reviewer of :
- 1. Science International, Dubai, UAE.
- 2. International Journal of Scientific Research & Nano-Technology

5) Faculty Development Programmes (FDPs)

Sr. No.	Course	Name of the Institute	Date Grade
1	Faculty Induction	Indian Institute of Science,	30 Oct to 23 A
	Programme	Education and Research	Nov. 2019
2	Faculty Development	Indian Institute of	8 Week A
	Programme	Technology Roorkee	
3	Faculty Development	Indian Institute of	4 Week A
	Programme	Technology Roorkee	
4	Faculty Development Programme	Ramanujan College, Delhi University. PMMM National Mission on Teachers and Teaching	2 Week
5	Faculty Development Programme	Swami Ramanand Terth Marathwada University, Nanded	1 Week
8	Faculty Development Programme	Shrimati Indira Mahadev Beharay College of Arts, Shriman Chandulal Sheth College of Commerce, Shrimati Shobhatai Chadulal Sheth College of Science, Khed-Ratnagiri.	5 days

6) Courses

Sr. No.	Course	Institute/Organization	Date of Completion
1	BSAFE (English)	UN & UN agencies	21/04/20
2	Introduction to Nutrition	UNICEF	22/04/20
3	Prevention of Sexual exploitation & abuse (PSEA)	UNICEF	21/04/20
4	Children & Climate Change	UNICEF & UN CC: Learn	21/04/20
5	Socio-Economic Policies for Child Right with Equity	UNICEF	21/04/20

7) Course Outcomes:

Sr. No.	Course	Outcomes
1	B.Sc. I	CO1: Understanding the concept of Moment of Inertia and applying
	Paper I	them in calculations of the moment of inertia of various systems.
	1	CO2. Understand the physics and mathematics of oscillations and to
		solve the equations of motion for simple harmonic and damped
		oscillators
		CO3. Understand the concepts of energy, work, power, the concepts of
		conservation of energy and be able to perform calculations using them.

		CO4. Understand the concepts of elasticity and be able to perform calculations using them.
		CO5. Understand the concepts of surface tension and viscosity and be
		able to perform calculations using them.
		CO6. Understand the concepts of viscosity & fluid dynamics and its
		application in real life problems.
		CO7. Demonstrate quantitative problem solving skills in all the topics covered
2	B.Sc. I	CO1: Understand technical applications of simple optical instruments.
	Paper II	CO2: Understand and explain the different optical method of testing and measuring of various physical parameters
		CO3: Understand Fermat's principle, explain about different
		aberrations in lenses and discuss the method to minimize them.
		CO4: Understand the types of eyepieces and construction and working of spectrometer and optical bench for determining various optical
		values.
		CO5: Understand the phenomenon of interference of light and its formation in thin film, Newton's ring, wedge shaped film etc. due to
		division of amplitude. CO6: Explain Schuster method, Distinguish between diffraction and
		interference patterns, prism and grating spectra
		CO7: Comprehended the basic principle of laser and its parts, the
		construction and working of He-Ne and Ruby laser.
		CO8: Solve problems using suitable assumptions and formulae as well as able to assess the results
3	B.Sc. I	CO1: Determination of Coefficient of Viscosity, Thermal Conductivity
	Paper III	and Diffusion.
		CO2: Understand Liquefaction of gases by various methods and Properties of Liquid He-II.
		CO3: Apply the laws of thermodynamics to formulate the relations
		necessary to analyze a thermodynamic process.
		CO4: Analyse the heat engines and calculate thermal efficiency.
		CO5: Analyze the refrigerators and calculate coefficient of performance.
		CO6: Understand property 'entropy' and derive some thermo dynamical
		relations using entropy concept
4	B.Sc. I	CO1: Understand the concept of Varying Current and applying them in
	Paper IV	charging and discharging of capacitor and time constant.
		CO2: Understand the concept of AC circuits and different AC bridges. CO3: Understand the concepts Magnetostatics and applying then to
		determine magnetic induction and also understand Ballistic
		Galvanometer theory and its constants.
		CO4: Understand the rectifiers specially Bridge rectifier with filters also
		different wave shaping circuits.
		CO5: Understand BJT include its output characteristics under CE and
5	B.Sc. II	CB mode with application of transistor amplifier Students will able to learn:
3	Paper V	CO1: Scalar and vector triple product, Scalar and vector fields, Del
	1 upor v	operator, Gradient and Divergence
		CO2: curl of vector and their physical significance
		CO3: Concept of Precession, Gyroscope, Nutation, Lanchester's rules,
		Gyrostatic pendulum CO4: Gyroscopic applications in brief
		COT. Cyroscopic applications in other

		CO5: concepts of Elasticity, Bending of a beam, Bending moment, Cantilever, Centrally loaded beam
		CO6: Viscosity of liquid by rotating cylinder method, Searle's
		viscometer, Ostwald's viscometer
		CO7: Concepts of Sound, Acoustic transducers, Pressure microphone,
-	5 6 77	Moving coil loudspeaker, Sabine's formula.
6	B.Sc. II	The students would gain the knowledge of Basic Electronics circuits,
	Paper VI	network theorems and measuring instruments, Semiconductor diodes
		and transistors.
		CO1: Knowledge about semiconductors since it is a basic materials used
		in many electronic components like diode, transistors FET, UJT etc.
		CO2: Characteristics and working of operational amplifiers which are
		useful in various medical and scientific investigations to amplify the
		signals.
		CO3: Generation of high frequency signals using oscillator circuits and
		their applications in radio and TV communication CO4: Concepts of regulated power supply, rectifiers, filters and
		regulators.
		CO5: An introduction to digital electronics which is useful in digital
		computers. Also logic gates and their applications. Sequential Logic
		Circuits, Flip- Flop
		CO6: Special Purpose diodes like LED, photodiode, Varactor,
		Optocoupler CO2: Amplifiers, and differential amplifier
		CO7: Operational Amplifiers its parameters, characteristics and
		applications
		CO8: Junction Field Effect Transistor and MOS Field Effect Transistor,
		Working and applications
		CO9: Operational Amplifiers its parameters, characteristics and
		applications
		CO10: Regulated power supply using IC 723
7	B.Sc. II	The students would gain the knowledge of
	Paper VII	CO1: Image formation related to geometrical optics, Deviation,
		Magnification, Concept for Equivalent lens and Cardinal Points
		CO2: Different types of monochromatic and chromatic aberrations and
		Achromatism in lenses
		CO3: Construction and working of Simple Microscope, Compound
		Microscope, Ramsden's Eyepiece and Huygen's Eyepiece
		CO4: Interference and diffraction of light, Formation of fringes,
		Resolution CO5: Concept of Polarization, Double refraction, Construction and
		working of Nicol Prism
8	B.Sc. II	CO1: Students would know about the basic principles in the
0		development of modern physics.
	Paper VIII	CO2: The topics covered in the course build a basic foundation of
		undergraduate physics students to study the advance branches: quantum
		physics, nuclear physics, particle physics and high energy physics.
		CO3: The course contains the study of theory of relativity, Planck's
		hypothesis, photoelectric effect, Compton effect, matter waves, atomic
		models, Schrodinger wave equations, and brief idea of nuclear physics.
		, James a, and a second physical

8) Syllabus:

Sr. No.	Course	Syllabus Link
NO.		
1	B.Sc. I	https://su.digitaluniversity.ac/WebFiles/B%20Sc%20I%20%20Physics %20Syllabus%20CBCS%202019-20.pdf
2	B.Sc. II	https://su.digitaluniversity.ac/WebFiles/BSc%20II%20Physics%20Syllabus%2008072020.pdf
3	B.Sc. III	https://su.digitaluniversity.ac/WebFiles/BSc%20III%20%20Physics%2 0Structure%20%20and%20Syllabus%20Rev.pdf

9) Publications

Sr. No.	Research Article/Book
1	Text book of material science (B.Sc. III) [ISBN-9789 3526 7881]
2	R.M. Mohite R. M., A.S. Roy, R.R. Kothawale, Significant enhancement in the conductivity of Al-doped zinc oxide thin films for TCO application, <i>International Journal of Nanoscience</i> , 15 (1) (2015), 1650011-1
3	R.M. Mohite, R.R. Kothawale, Al-doped zinc oxide nanostructures as transparent conductive window layer for photovoltaic application, <i>Indian Journal of Chemistry A</i> , 54A, (2015), 872-876.
4	R.R. Kothawale, R.M. Mohite, Morphological, Electrical and Optical properties of Al-doped zinc oxide nanorods, <i>Advanced materials research</i> , 1110, (2015), 218-221.
5	R.M. Mohite, S.S. Mule, Controlled Precipitation of Zinc Oxide by Chemical Bath Deposition, ijiset, 10(5), (2021), 4327-4330.
6	R.M. Mohite, R.R. Kothawale, Spray pyrolysis deposited ZnO nanostructures as transparent window layer for photovoltaic application, <i>ijsr</i> , 3 (12), (2014), 29-31.
6	R.M. Mohite, R.R. Kothawale, Synthesis and characterization of Al-doped zinc oxide nanorods for TCO application, <i>ijst</i> , 4 (6), (2014), 220-226.
7	R.M. Mohite, R.R. Kothawale, Fabrication of highly efficient and semitransparent ZnO nanomaterial for solar cells, <i>International Journal of Advanced Scientific and Technical Research</i> [IJAST], 2 (5), (2012), 200-226.
9	R.R. Kothawale, R.M. Mohite, R. Nagrajan, Mossbauer Studies of ¹⁵¹ Eu Doped High Tc Superconducting Bi _{1.7} Pb _{0.3} Sr ₂ Ca _{2-x} Eu _x Cu ₃ O _{10+δ} , <i>Int. Journal of Advanced Scientific and Technical Research</i> , 2 (3), (2012), 79-82.
10	R.M. Mohite, Noble Crystal Growth System for Production of Commercial Crystals Based on TRM., <i>Int. J. of Adv. Sci. and Tech. Res.</i> , 2 (1), (2012) 158-162.
11	R.M. Mohite, Single Crystal Growth Of K _x Fe ₂ Se ₂ By Bridgman Method And Its Characterizations. <i>International Journal of Emerging Technologies in Sciences and Engineering</i> , 5 (1), (2011), 6-9.
12	R.M. Mohite, Rapid Growth Of KDP Crystal By Solution Growth Method With [EDTA, KCl] Additives And Its Characterizations. <i>IJETSE</i> , 3 (2), (2011), 14-17.
13	R.M. Mohite, R.R. Kothawale, Preparation and characterization of cuprous oxide thin films as an active layer for solar cells. <i>Proceedings International Conference on Functional Materials</i> @ <i>Nanoscale: Concerns and Challenges</i> , (2015), 146-147.

14	R.M. Mohite, R.R. Kothawale, <i>Proceedings International Conference on Nanomaterials for Sustainable Green Technology</i> , (2015), Chapter 16, Published.
15	Dr. R.M. Mohite, Dr. R.R. Kothawale, Dr. A.S. Roy, Low-Temperature Synthesis of Zinc Oxide Nanorods by Wet-Chemical method, Int. Res. J. of
	Science & Engineering, A5,87-89,2018

10) Conference Proceedings/ seminars/ workshops

Sr. No.	Name of the conference
1	R.R. Kothawale, R.M. Mohite, 7 th International Conference on Advanced Materials Development & Performance, (AMDP-2014), 18-21 July 2014, Oral presentation, (Korea).
2	R.M. Mohite, R.R. Kothawale, 27th annual IAPT convention and seminar on recent trends in photonics, 2-4 Nov 2012, Poster presented (Cochin).
3	R.M. Mohite, R.R. Kothawale, <i>Physics of Materials and Materials Based Device Fabrication (ICPM-MDF-2014)</i> , 13-15 Jan 2014, Poster presented (Kolhapur).
4	R.R. Kothawale, R.R. Mohite, <i>International Workshop on Nanotechnology and Advanced Functional Materials</i> , (NTAFM 2013), 24-25 July 2013, Poster presented (Pune).
5	R.M. Mohite, R.R. Kothawale, <i>1st International Conference on Physics</i> , <i>Mathematics, Geology and Engineering Sciences</i> , 2013, 18 March 2013, Oral presentation (Pune).
6	R.M. Mohite, Avishkar 2008, Ahmednagar College (Ahmednagar).
7	R.M. Mohite, R.R. Kothawale, <i>Emerging Horizons in Biochemical Sciences and Nanomaterials (EHBCSN-2013)</i> , 28-30 Nov 2013, Poster, (Barshi)
8	R.M. Mohite, R.R. Kothawale, <i>International conference on Functional Materials</i> @ <i>Nanoscale: Concerns and Challenges (ICFMNCC-2015)</i> , 9-11 March 2015, Poster presented (Pandharpur).
9	R.M. Mohite, R.R. Kothawale, <i>International conference on nanomaterials for sustainable green technology (ICNSGT 2015)</i> , 5-6 Jan 2015, (Mumbai).
10	R.M. Mohite, Workshop on New Syllabus of B.Sc. (III) Physics, March, 2016, (Akluj)
11	Two day state level workshop on E-content development, 27-28/10/2018, CT Bora college, Shirur.
12	Two day state level workshop on Advance Shaikshanik Video Nirmiti Karyshala, 17-18/11/2018, Angar, Solapur
13	Two day state level workshop on E-content development workshop, 24-25/11/2018, Walchand college of Arts and Science, Solapur.
14	Two day state level workshop 'Educational Video Creation', 12-13/01/2019, Shri Shivaji Mahavidyalaya, Barshi.
15	International conference on Recent Advances in Physical and Chemical Sciences, 22/01/2020, Sangola College Sangola.
16	National seminar on Recent Advances in Green Chemistry and Physics, 27/04/2018, Shri Chatrapati Shivaji College, Omerga.
17	International conference on Functional Eco-friendly Smart Emerging Materials, 10-12/03/2016, Baburaoji Gholap College, Sangvi, Pune.
18	National Conference on Advances in Condensed Matter Physics, 28/02/2019, D.B.F. Dayanand College of Arts and Science, Solapur.

19	B.Sc. III (Physics) CBCS Practical Course, 01/03/2019, D.B.F. Dayanand College of Arts and Science, Solapur.
20	National Seminar on Modern Approaches in Sciences, 28/01.2019, K.N. Bhise Arts, Commerce and Vinayakrao Patil Science College, Kurduwadi.
21	2 nd Mumbai-Pune Semiconductor Meeting, 12/03/2016, IISER Pune.
22	International Conference on Recent Advances in Physical and Chemical Sciences, Sangola College, Sangola, 22/01/2020, Sangola.

11) Meritorious Students

Sr. No.	Name	Course	Year	Percentage
1	Kawale Mahesh	B.Sc. III	2019-20	72.8
2	Dindore Priyanka	B.Sc. III	2019-20	72.42
3	Sonar Rohit Kumar	B.Sc. III	2021-22	86.68
4	Ghuge Vaibhav Rajendra	B.Sc. III	2021-22	77.59

12) Result Analysis

Sr. No.	Year	Percentage
1	2019-20	100
2	2020-21	100
3	2021-22	100

13) Parenting Policy

The department allocates the students among the faculty members equally. Every faculty member from every entry of the students takes care of the ward for Personal, Academic, Social, Psychological growth and development. It is a well-documented process as a part of IQAC's quality initiative.

14. SWOC analysis of the department:

a. Strength

- 1. Subject is offered from the beginning of the college hence many past students are employed in Government at various level.
- **2.** Brings awareness among students on various current issues of National andInternational importance.
- 3. Creates curiosity among students.
- 4. Helps in building good academicians and researchers.

b. Weakness

- 1. Student enrollment is less.
- 2. Not offered as a Core Compulsory subject.
- 3. Weak socio economic background of the students.
- 4. Poor communicative skill of student.
- **5.** Post of faculty lying vacant due to non-committal passive recruitment policy of Government.

c. Opportunities

- 1. Wide Scope for the students to build up their career.
- 2. Scope of higher education.
- 3. Good opportunities to make career in public and government sector.

d. Challenges

- 1. To complete syllabi in CBCS.
- 2. To make students aware of recent trends in Physics.
- 3. In adequate reference books in Vernacular language.

1. Future plans of the department:

- 1. Encourage students to pursue higher studies
- 2. To develop the basic concept of MORALITY among students
- 3. To organize national seminar and workshop
- 4. To organize poster presentation, Exhibition and science fair.
- 5. To start research center.

15) Contact Details

Sr. No.	Faculty	Contact No	E-mail Id	Twitter/ Face book
1	Dr. R.M. Mohite	7387950433	rajmohite07@gmail.com	NIL